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Abstract

In this paper we study the infinitesimal deformations of the Lie superalgebra Ln,m . By means of these deformations all filiform
Lie superalgebras can be obtained. In particular, we give a method that will allow us to determine the dimension of the space of
deformations of type Hom(S2(Ln,m

1 ), Ln,m
0 ). Note that this type of deformation is the only one that occurs for Lie superalgebras

which are not Lie algebras. Furthermore we develop a method for calculating a basis of the aforementioned space of deformations
Hom(S2(Ln,m

1 ), Ln,m
0 ), giving it explicitly for n ≥ 2m − 1.

c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In 1970 Vergne [12] used deformations to study the variety of finite-dimensional Lie algebras. She gave the
definition of filiform Lie algebras, a class of nilpotent Lie algebras with important properties. In particular every
filiform Lie algebra can be obtained by a deformation of the model filiform algebra Ln .

Concerning nilpotent Lie superalgebras, little work has been done. For example, we can find classifications in five
dimensions [6,7], as well as a discussion of immediate problems appearing in this variety [4], and an approach to
deformations of Lie superalgebras [5].

The present work is about nilpotent Lie superalgebras, in particular about the subclass of the so-called filiform Lie
superalgebras. In the same way as filiform Lie algebras, all filiform Lie superalgebras can be obtained by infinitesimal
deformations of the model Lie superalgebra Ln,m , thus being the analogue of the filiform Lie algebra Ln in the theory
of Lie superalgebras.

We shall therefore consider infinitesimal deformations of Ln,m which are defined by even 2-cocycles in
Z2

0(Ln,m, Ln,m). This latter space has an obvious direct decomposition into three subspaces according to the even
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part Ln,m
0 and the odd part Ln,m

1 of Ln,m . The first two components (which lie in Hom(Λ2Ln,m
0 , Ln,m

0 ) or in
Hom(Ln,m

0 ⊗ Ln,m
1 , Ln,m

0 ) have already been dealt with in [9, Thm.3, Thm.4]. The aim of this article is a detailed study
of the third subspace Z2(Ln,m, Ln,m)∩Hom(S2Ln,m

1 , Ln,m
0 ) which consists of ‘symmetric’ infinitesimal deformations,

i.e. which are the only ones that give ‘true’ Lie superalgebras (i.e. which are not Lie algebras).
Moreover, representation theory of sl(2, C) will allow us to determine the dimension of this space of deformations
(Theorem 1); see also [1, p.197] for a similar sl(2, C)-type computation of the dimension of the scalar cohomology
of the filiform Lie algebras.
Furthermore, we shall develop a method for calculating an expression for the basis of the above space of deformations,
giving explicitly a basis for the case with more cocycles, that is m(m+1)

2 with n ≥ 2m − 1 (Theorem 2).
Combining with Khakimdjanov’s results [9, Thm.3, Thm.4] we therefore obtain a complete classification of all the

deformations of the Lie superalgebra Ln,m .
All the vector spaces that appear in this paper (and thus, all the algebras) are assumed to be C-vector spaces of

finite dimension. Moreover, we shall use the well-known convention that for the definition of a Lie (super-)bracket in
terms of a basis only the nonvanishing brackets in some ordering of the base are explicitly mentioned.

2. Preliminaries

Recall that a superspace is a vector space with a Z2-grading: V = V0 ⊕ V1. Usually, elements of the space V0
are called even, and elements of the space V1, odd; the indices 0 and 1 are modulo 2. A linear map φ : V → W
between two vector superspaces is called even iff φ(V0) ⊂ W0 and φ(V1) ⊂ W1 and is called odd iff φ(V0) ⊂ W1
and φ(V1) ⊂ W0. Clearly, Hom(V, W ) = Hom(V, W )0 ⊕ Hom(V, W )1 where the first summand comprises all
the even and the second summand all the odd linear maps. Tensor products V ⊗ W are Z2 graded by means of
(V ⊗ W )0 := (V0 ⊗ W0) ⊕ (V1 ⊗ W1) and (V ⊗ W )1 := (V0 ⊗ W1) ⊕ (V1 ⊗ W0).

A Lie superalgebra (see [3,10]) is a superspace g = g0 ⊕ g1, with an even bilinear commutation operation (or
“supercommutation”) [ , ], which satisfies the conditions:

1. [X, Y ] = −(−1)α·β
[Y, X ] ∀X ∈ gα, ∀Y ∈ gβ .

2. (−1)γ ·α
[X, [Y, Z ]] + (−1)α·β

[Y, [Z , X ]] + (−1)β·γ
[Z , [X, Y ]] = 0

for all X ∈ gα, Y ∈ gβ , Z ∈ gγ with α, β, γ ∈ Z2. (The graded Jacobi identity.)

Thus, g0 is an ordinary Lie algebra, and g1 is a module over g0; the Lie superalgebra structure also contains the
symmetric pairing S2g1 −→ g0, which is a g0-homomorphism and satisfies the graded Jacobi identity applied to three
elements of the space g1.

The descending central sequence of a Lie superalgebra g = g0 ⊕ g1 is defined by C0(g) = g, Ck+1(g) = [Ck(g), g]

for all k ≥ 0. If Ck(g) = {0} for some k, the Lie superalgebra is called nilpotent. The smallest integer k such as
Ck(g) = {0} is called the nilindex of g.

We define two new descending sequences, Ck(g0) and Ck(g1), as follows: C0(gi ) = gi , Ck+1(gi ) = [g0, Ck(gi )],
k ≥ 0, i ∈ {0, 1}.

If g = g0 ⊕ g1 is a nilpotent Lie superalgebra, then g has super-nilindex or s-nilindex (p, q), if the following
conditions hold:

(C p−1(g0)) 6= 0 (Cq−1(g1)) 6= 0, C p(g0) = Cq(g1) = 0.

Recall that a module A = A0 ⊕ A1 of the Lie superalgebra g is an even bilinear map g × A → A satisfying

∀X ∈ gα, Y ∈ gβa ∈ A : X (Y a) − (−1)αβY (Xa) = [X, Y ]a.

Lie superalgebra cohomology is defined in the following well-known way (see e.g. [3,11]): the superspace of q-
dimensional cocycles of the Lie superalgebra g = g0 ⊕ g1 with coefficients in the g-module A = A0 ⊕ A1 is given
by

Cq(g; A) =

⊕
q0+q1=q

Hom
(
∧

q0 g0 ⊗ Sq1g1, A
)
.

This space is graded by Cq(g; A) = Cq
0 (g; A) ⊕ Cq

1 (g; A) with
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Cq
p(g; A) =

⊕
cq0+q1=q

q1+r≡p mod 2

Hom
(
∧

q0 g0 ⊗ Sq1g1, Ar
)
.

The differential d : Cq(g; A) −→ Cq+1(g; A) is defined by the formula

(dc)(g1, . . . , gq0 , h1, . . . , hq1) =

∑
1≤s<t≤q0

(−1)s+t−1c([gs, gt ], g1, . . . , ĝs, . . . , ĝt , . . . , gq0 , h1, . . . , hq1)

+

q0∑
s=1

q1∑
t=1

(−1)s−1c(g1, . . . , ĝs, . . . , gq0 , [gs, ht ], h1, . . . , ĥt , . . . , hq1)

+

∑
1≤s<t≤q1

c([hs, ht ], g1, . . . , gq0 , h1, . . . , ĥs, . . . , ĥt , . . . , hq1)

+

q0∑
s=1

(−1)s gs(c(g1, . . . , ĝs, . . . , gq0 , h1, . . . , hq1))

+ (−1)q0−1
q1∑

s=1

hs(c(g1, . . . , gq0 , h1, . . . , ĥs, . . . , hq1))

where c ∈ Cq(g; A), g1, . . . , gq0 ∈ g0 and h1, . . . , hq1 ∈ g1. Obviously, d ◦ d = 0, and d(Cq
p(g; A)) ⊂ Cq+1

p (g; A)

for q = 0, 1, 2, . . . and p = 0, 1. Then we have the cohomology groups

Hq
p (g; A) = Zq

p(g; A)/Bq
p(g; A)

where the elements of Zq
0 (g; A) and Zq

1 (g; A) are called even q-cocycles and odd q-cocycles respectively.
Analogously, the elements of Bq

0 (g; A) and Bq
1 (g; A) will be even q-coboundaries and odd q-coboundaries

respectively. Two elements of Zq(g; A) are said to be cohomologous if their residue classes modulo Bq(g; A) coincide,
i.e., if their difference lies in Bq(g; A).

3. Deformations of Ln,m

If we denote byN n+1,m the variety of nilpotent Lie superalgebras g = g0⊕g1 with dim g0 = n+1 and dim g1 = m
we will have the following definition:

Definition 3.1 ([4]). Any nilpotent Lie superalgebra g = g0 ⊕ g1 ∈ N n+1,m with s-nilindex (n, m) is called filiform.

We denote by Fn+1,m the subset of N n+1,m consisting of all the filiform Lie superalgebras.
Before we study this family of Lie superalgebras it is convenient to solve the problem of finding a suitable basis, a

so-called adapted basis.

Theorem 3.1.1 ([4]). If g = g0 ⊕ g1 ∈ Fn+1,m , then there exists an adapted basis of g, namely
{X0, X1, . . . , Xn, Y1, . . . , Ym}, with {X0, X1, . . . , Xn} a basis of g0 and {Y1, . . . , Ym} a basis of g1, such that:

[X0, X i ] = X i+1, 1 ≤ i ≤ n − 1,

[X0, Xn] = 0,

[X0, Y j ] = Y j+1, 1 ≤ j ≤ m − 1,

[X0, Ym] = 0.

X0 is called the characteristic vector.

From the preceding theorem it can be observed that the simplest filiform Lie superalgebra, denoted by Ln,m , will
be defined by the following brackets:

Ln,m
:

{
[X0, X i ] = X i+1, 1 ≤ i ≤ n − 1,

[X0, Y j ] = Y j+1, 1 ≤ j ≤ m − 1,

with {X0, X1, . . . , Xn, Y1, . . . , Ym} a basis of Ln,m . We shall frequently write

V0 := 〈X1, . . . , Xn〉, V1 := 〈Y1, . . . , Ym〉,
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whence Ln,m
0 = 〈X0〉 ⊕ V0 and Ln,m

1 = V1.
This superalgebra will be the most important filiform Lie superalgebra since all the other filiform Lie superalgebras

can be obtained from Ln,m by deformations (in complete analogy to Lie algebras; see [12]). So, we are going to
consider its infinitesimal deformations that will be given by the even 2-cocycles, Z2

0(Ln,m, Ln,m).
An infinitesimal deformation of Ln,m will thus be an element of the following space:

Z2
0(Ln,m, Ln,m) = Z2(Ln,m, Ln,m) ∩ Hom(g0 ∧ g0, g0) ⊕ Z2(Ln,m, Ln,m) ∩ Hom(g0 ⊗ g1, g1)

⊕ Z2(Ln,m, Ln,m) ∩ Hom(S2g1, g0)

=: A ⊕ B ⊕ C.

We shall frequently simplify the notation and write g0 and g1 in place of Ln,m
0 and Ln,m

1 .
The subspaces A = Z2(Ln,m, Ln,m) ∩ Hom(g0 ∧ g0, g0) and B = Z2(Ln,m, Ln,m) ∩ Hom(g0 ⊗ g1, g1) have been

completely determined by Khakimdjanov; see [9]. Our aim is therefore to determine the remaining subspace C :

C = Z2(Ln,m, Ln,m) ∩ Hom(S2g1, g0).

The importance of C can be summed up in three facts:

1. The deformations that belong to A ⊕ B lead to Lie superalgebras that always are Lie algebras (split cases, since the
odd part remains an abelian Lie subalgebra). However, the deformations of Ln,m that belong to C lead to genuine
Lie superalgebras (that they are not Lie algebras).

2. The infinitesimal deformations belonging to C are all integrable.
3. The nonzero infinitesimal deformations of C are never cohomologous to 0, that is C ∩ B2

0 (Ln,m, Ln,m) = 0.

4. sl(2, C)-module method

In this section we are going to explain the sl(2, C)-module method to compute the dimension of C . Recall the
following well-known facts about the Lie algebra sl(2, C) and its finite-dimensional modules; see e.g. [2,8]:

sl(2, C) = 〈X−, H, X+〉 with the following commutation relations:[X+, X−] = H
[H, X+] = 2X+,

[H, X−] = −2X−.

Let V be a n-dimensional sl(2, C)-module, V = 〈e1, . . . , en〉. Then, up to isomorphism there exists a unique structure
of an irreducible sl(2, C)-module in V given in a basis e1, . . . , en as follows [2]:X+ · ei = ei+1, 1 ≤ i ≤ n − 1,

X+ · en = 0,

H · ei = (−n + 2i − 1)ei , 1 ≤ i ≤ n.

It is easy to see that en is the maximal vector of V and its weight, called the highest weight of V , is equal to n − 1.
Let V0, V1, . . . , Vk be sl(2, C)-modules, then the space Hom(⊗k

i=1 Vi , V0) is a sl(2, C)-module in the following
natural manner:

(ξ · ϕ)(x1, . . . , xk) = ξ · ϕ(x1, . . . , xk) −

i=k∑
i=1

ϕ(x1, . . . , ξ · xi , xi+1, . . . , xn)

with ξ ∈ sl(2, C) and ϕ ∈ Hom(⊗k
i=1 Vi , V0). An element ϕ ∈ Hom(V1 ⊗V1, V0) is said to be invariant if X+ ·ϕ = 0,

that is

X+ · ϕ(x1, x2) − ϕ(X+ · x1, x2) − ϕ(x1, X+ · x2) = 0, ∀x1, x2 ∈ V1. (4.1)

Note that ϕ ∈ Hom(V1 ⊗ V1, V0) is invariant if and only if ϕ is a maximal vector.
On the other hand, we are going to consider the Lie superalgebra Ln,m with basis {X0, X1, . . . , Xn, Y1, . . . , Ym}.

By definition, a cocycle ϕ belonging to C will be a symmetric bilinear map:

ϕ : S2Ln,m
1 −→ Ln,m

0
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such that dϕ = 0. That is, ϕ will satisfy the two conditions

[x, ϕ(y, z)] + [z, ϕ(x, y)] + [y, ϕ(z, x)] = 0, ∀x, y, z ∈ Ln,m
1

[x, ϕ(y, z)] − ϕ(z, [x, y]) − ϕ(y, [x, z]) = 0, ∀x ∈ Ln,m
0 ; y, z ∈ Ln,m

1 .

Taking into account the law of Ln,m the above conditions can be simplified to

[X0, ϕ(Yi , Y j )] − ϕ([X0, Yi ], Y j ) − ϕ(Yi , [X0, Y j ]) = 0, with 1 ≤ i ≤ j ≤ m. (4.2)

We are going to consider the structure of irreducible sl(2, C)-module in V0 = 〈X1, . . . , Xn〉 = Ln,m
0 /CX0 and in

V1 = 〈Y1, . . . , Yn〉 = Ln,m
1 ; thus in particular:

X+ · X i = X i+1, 1 ≤ i ≤ n − 1,

X+ · Xn = 0,

X+ · Y j = Y j+1, 1 ≤ j ≤ m − 1,

X+ · Ym = 0.

We identify the multiplication of X+ and X i in the sl(2, C)-module V0 = 〈X1, . . . , Xn〉 with the bracket [X0, X i ] in
Ln,m

0 . Analogously, we identify X+ · Y j and [X0, Y j ]. Thanks to these identifications, the expressions (4.1) and (4.2)
are equivalent, so we have the following result:

Proposition 4.1. Any symmetric bilinear map ϕ, ϕ : S2V1 −→ Ln,m
0 will be an element of C if and only if ϕ is a

maximal vector of the sl(2, C)-module Hom(S2V1, V0), with V0 = 〈X1, . . . , Xn〉 and V1 = Ln,m
1 .

Proof. If ϕ ∈ C , then Im ϕ ⊂ V0. In fact, the ideal V0 is equal to its own centralizer in Ln,m
0 . Let x ∈ V0 and

y, y′
∈ Ln,m

1 . Thanks to the cocycle identity we get

[x, ϕ(y, y′)] = ϕ(y, [x, y′
]) + ϕ(y′, [x, y]) = 0 ∀x ∈ V0; y, y′

∈ Ln,m
1 .

since [V0, V1] = {0}. Hence ϕ(y, y′) centralizes V0, and is thus an element of V0. The same cocycle equation for x
replaced by X0, i.e.

[X0, ϕ(y, y′)] − ϕ(y, [X0, y′
]) − ϕ(y′, [X0, y]) = 0,

shows that ϕ ∈ Hom(S2V1, V0) is invariant which proves the proposition and the Eq. (4.2). �

Corollary 4.1.1. As each irreducible sl(2, C)-module has (up to nonzero scalar multiples) a unique maximal vector,
then the dimension of C is equal to the number of summands of any decomposition of Hom(S2V1, V0) into the direct
sum of irreducible sl(2, C)-modules.

But instead of looking at the maximal vectors, we can equally well use the fact that each irreducible module
contains either a unique (up to scalar multiples) vector of weight 0 (in the case where the dimension of the irreducible
module is odd) or a unique (up to scalar multiples) vector of weight 1 (in the case where the dimension of the
irreducible module is even). We therefore have the

Corollary 4.1.2. The dimension of C is equal to the dimension of the subspace of Hom (S2V1, V0) spanned by the
vectors of weight 0 or 1.

5. Computation of the dimension of Z2(Ln,m, Ln,m) ∩ Hom(S2g1, g0)

In this section we are going to apply the sl(2, C)-module method in order to obtain the dimension of C =

Z2(Ln,m, Ln,m) ∩ Hom(S2g1, g0).
Firstly, we consider a natural basis B of Hom(S2g1, g0) consisting of the following maps where 1 ≤ s ≤ n and

1 ≤ i, j, k, l ≤ m:

ϕs
i, j (Yk, Yl) =

{
Xs if (i, j) = (k, l)
0 in all other cases.
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Thanks to Corollary 4.1.2 it will be enough to find the basis vectors ϕs
i, j with weight 0 or 1. The weight of an element

ϕs
i, j (with respect to H ) is

λ(ϕs
i, j ) = λ(Xs) − λ(Yi ) − λ(Y j ) = 2m − n + 2(s − i − j) + 1.

In fact,

(H · ϕs
i, j )(Yi , Y j ) = H · ϕs

i, j (Yi , Y j ) − ϕs
i, j (H · Yi , Y j ) − ϕs

i, j (Yi , H · Y j )

= H · Xs − ϕs
i, j ((−m − 1 + 2i)Yi , Y j ) − ϕs

i, j (Yi , (−m − 1 + 2 j)Y j )

= (−n − 1 + 2s)Xs − (−m − 1 + 2i)Xs − (−m − 1 + 2 j)Xs

= [2m − n + 2(s − i − j) + 1]Xs .

We are going to introduce a simpler weight of an element ϕ ∈ C . It corresponds to the action of the diagonalizable
derivation d, d ∈ DerLn,m , defined by

d(X0) = X0, d(X i ) = i X i , d(Y j ) = jY j ; 1 ≤ i ≤ n, 1 ≤ j ≤ m.

This weight will be denoted by p(ϕ). We have that

p(ϕs
i, j ) = s − i − j.

We have the following relationships between the two weights:

λ(ϕ) = 2p(ϕ) + 2m − n + 1,

p(ϕ) =
1
2
(λ(ϕ) − 2m + n − 1).

Remark 5.1. If n is even then λ(ϕ) is odd, and if n is odd then λ(ϕ) is even. So, if n is even it will be sufficient to
find the elements ϕs

i, j with weight 1 and if n is odd it will be sufficient to find those with weight 0.

In order to find the elements with weight 0 or 1, we can consider the three sequences that correspond with the
weights of V1 = 〈Y1, Y2, . . . , Ym−1, Ym〉, V1 = 〈Y1, Y2, . . . , Ym−1, Ym〉 and V0 = 〈X1, X2, . . . , Xn−1, Xn〉:

−m + 1, −m + 3, . . . , m − 3, m − 1;

−m + 1, −m + 3, . . . , m − 3, m − 1;

−n + 1, −n + 3, . . . , n − 3, n − 1.

We shall have to count the number of all possibilities to obtain 1 (if n is even) or 0 (if n is odd). Remember that
λ(ϕs

i, j ) = λ(Xs) − λ(Yi ) − λ(Y j ), where λ(Xs) belongs to the last sequence, and λ(Yi ), λ(Y j ) belong to the first and
second sequences respectively. For example, if n is odd we have to obtain 0, so we can fix an element (a weight) of
the last sequence and then to count the possibilities to sum the same quantity between the two first sequences. Taking
into account the symmetry of ϕs

i, j , that is ϕs
i, j = ϕs

j,i , and repeating the above reasoning for all the elements of the
last sequence we obtain the following theorem:

Theorem 1. If C = Z2(Ln,m, Ln,m) ∩ Hom(S2g1, g0), then we have the following values for the dimension of C:

dim C =



m(m + 1)

2
if n ≥ 2m − 1

1
8
(4mn − n2

+ 2n + 3) if n < 2m − 1, n ≡ 1(mod 4) and m odd, or

n ≡ 3(mod 4) and m even
1
8
(4mn − n2

+ 2n − 1) if n < 2m − 1, n ≡ 3(mod 4) and m odd, or

n ≡ 1(mod 4) and m even
1
8
(4mn − n2

+ 2n) if n < 2m − 1 and n even.
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Proof. It is convenient to distinguish the following six cases where the reasoning for each case is not hard:

(1) n ≥ 2m − 1
(2) n ≤ 2m − 1, n even.
(3) n ≤ 2m − 1, n ≡ 1(mod 4), m odd.
(4) n ≤ 2m − 1, n ≡ 3(mod 4), m even.
(5) n ≤ 2m − 1, n ≡ 1(mod 4), m even.
(6) n ≤ 2m − 1, n ≡ 3(mod 4), m odd. �

6. Construction of a basis of Z2(Ln,m, Ln,m) ∩ Hom(S2g1, g0)

In this section we are going to develop a method that permits us to calculate a basis of C = Z2(Ln,m, Ln,m) ∩

Hom(S2g1, g0) = C in each case.
Let ϕ be an element of C , with weight λ(ϕ). As ϕ is a maximal vector of the sl(2, C)-module Hom(S2V1, V0), its

weight λ(ϕ) is always a nonnegative integer, λ(ϕ) ≥ 0.
On the other hand, p(ϕ) is always less than or equal to n − 2, p(ϕ) ≤ n − 2. In fact, ϕn

1,1 is an element with
maximal weight p(ϕ), p(ϕn

1,1) = n − 2. So, we have the following estimates for p(ϕ):

n − 2m − 1
2

≤ p(ϕ) ≤ n − 2. (6.1)

In order to get a basis of C it is enough to obtain the basis for each subspace C(p) of C , spanned by all the elements
with weight p such that p satisfies (6.1).
Let ϕk,s be an element of Hom(S2V1, V0) with weight p, p(ϕk,s) = s − 2k, and defined by

ϕk,s(Yi , Yi ) =

{
Xs if i = k
0 in the other case

with 1 ≤ s ≤ n, 1 ≤ k ≤ m and satisfying the equations

[X0, ϕk,s(Yi , Y j )] − ϕk,s(Yi+1, Y j ) − ϕk,s(Yi , Y j+1) = 0, with 1 ≤ i, j ≤ m − 1. (6.2)

Thanks to the Eq. (4.2) we observe that ϕk,s is not always a cocycle of C . In particular, ϕk,s will be a cocycle of C if
and only if it satisfies the equations

[X0, ϕk,s(Yi , Ym)] − ϕk,s(Yi+1, Ym) = 0, with 1 ≤ i ≤ m.

By induction the following formula for ϕk,s can be proved:

ϕk,s(Yi , Y j ) = (−1)k−i
(

Ck−i
j−k −

1
2

Ck−i
j−k−1

)
X i+ j+s−2k

with 1 ≤ i < j ≤ m, k ≤
i+ j

2 . We suppose that Cq
t = 0 if q < 0 or t < 0 or q > t , and C0

0 = C0
t = 1 with t > 0. In

the remaining cases we have Cq
t =

t !
q!(t−q)!

.

Proposition 6.1. The symmetric bilinear map ϕk,s defined by the formula

ϕk,s(Yi , Y j ) = (−1)k−i
(

Ck−i
j−k −

1
2

Ck−i
j−k−1

)
X i+ j+s−2k, 1 ≤ i, j ≤ m

is a cocycle of C iff

p(ϕk,s) = s − 2k ≥ n − m − 1.

Proof. We only have to check whether ϕk,s satisfies or does not satisfy the equations

[X0, ϕk,s(Yi , Ym)] = ϕk,s(Yi+1, Ym), with 1 ≤ i ≤ m.

If p(ϕk,s) = n − m − 1, then
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ϕk,s(Y1, Ym) = (−1)k−1
(

Ck−1
m−k −

1
2

Ck−1
m−k−1

)
Xn

and ϕk,s(Y2, Ym) = · · · = ϕk,s(Ym, Ym) = 0 which clearly satisfies the above equations. If p(ϕk,s) > n − m − 1, then
ϕk,s(Y1, Ym) = · · · = ϕk,s(Ym, Ym) = 0 and this also satisfies the cocycle equations of C .
If p(ϕk,s) < n − m − 1, then

ϕk,s(Y1, Ym) = (−1)k−1
(

Ck−1
m−k −

1
2

Ck−1
m−k−1

)
X t

with t < n. If we apply the cocycle equations we have

[X0, ϕk,s(Y1, Ym)] = ϕk,s(Y2, Ym) = (−1)k−2
(

Ck−2
m−k −

1
2

Ck−2
m−k−1

)
X t+1,

but

[X0, ϕk,s(Y1, Ym)] =

[
X0, (−1)k−1

(
Ck−1

m−k −
1
2

Ck−1
m−k−1

)
X t

]
= (−1)k−1

(
Ck−1

m−k −
1
2

Ck−1
m−k−1

)
, X t+1

and then

Ck−2
m−k −

1
2

Ck−2
m−k−1 = −Ck−1

m−k +
1
2

Ck−1
m−k−1,

which is a contradiction. �

Proposition 6.2. Let ϕ ∈ C be a cocycle with weight p = p(ϕ) ≤ n − m − 2. Then

ϕ =

∑
s−2k=p

akϕk,s

for some numbers ak .

Proof. Let ϕ ∈ C be a cocycle with weight p. Then ϕ(Yi , Yi ) = ai X2i+p. We are going to consider the difference

Ψ = ϕ −

∑
s−2k=p

akϕk,s .

It is easy to check that Ψ is a symmetric bilinear map such that

Ψ(Y1, Y1) = Ψ(Y2, Y2) = · · · = Ψ(Ym, Ym) = 0.

As ϕk,s satisfies Eq. (6.2), Ψ satisfies it too, which implies that Ψ vanishes. In fact, if we fix i with 1 ≤ i ≤ m − 1,
we can prove by induction that Ψ(Yi , Yi+k) = 0, for all k ≥ 0: We suppose that the relation is true up to k. Thanks to
(6.2), for k + 1 we have

[X0,Ψ(Yi , Yi+k)] = 0 = Ψ(Yi+1, Y(i+1)+(k−1)) + Ψ(Yi , Yi+k+1) = 0 + Ψ(Yi , Yi+k+1)

which proves the result. �

Proposition 6.3. Let ϕ be a nonzero cocycle of weight p = p(ϕ) ≤ n − m − 2

ϕ =

∑
s−2k=p

akϕk,s .

Then p ≥ n − 2m.

Proof. Let ϕ =
∑

s−2k=p akϕk,s be a cocycle with p < n − 2m. If ϕ is nonzero, then there exists i such that ai 6= 0,
and thus ϕ(Yi , Yi ) = ai X2i+p 6= 0. As ϕ is a cocycle it has to satisfy the Eq. (4.2), and then we have:

(ad X0)(ϕ(Yi , Yi )) = 2ϕ(Yi , Yi+1),
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(ad X0)
2(ϕ(Yi , Yi )) = 2ϕ(Yi , Yi+2) + 2ϕ(Yi+1, Yi+1),

(ad X0)
3(ϕ(Yi , Yi )) = 2ϕ(Yi , Yi+3) + 6ϕ(Yi+1, Yi+2),

...

(ad X0)
2(m−i)(ϕ(Yi , Yi )) =

∑
α jϕ(Yi+ j , Yi+(m−i)+ j ) = αϕ(Ym, Ym).

Then 0 6= ai Xm+2p = αϕ(Ym, Ym). Thus ϕ(Ym, Ym) = am Xm+2p with am 6= 0 and m + 2p < n, so
[X0, ϕ(Ym, Ym)] = am Xm+2p+1 6= 0 which is a contradiction with the Eq. (4.2):

[X0, ϕ(Ym, Ym)] = ϕ([X0, Ym], Ym) + ϕ(Ym, [X0, Ym]) = 0. �

Proposition 6.4. Let ϕ be a cocycle of C

ϕ =

∑
s−2k=p

akϕk,s

with max
{

n−2m−1
2 , n − 2m

}
≤ p ≤ n − m − 2. Then ϕ is a cocycle iff

(ad X0)
r−1(ϕ(Y1, Ym)) = (ad X0)

r−2(ϕ(Y2, Ym)) = · · · = (ad X0)(ϕ(Yr−1, Ym)) = ϕ(Yr , Ym)

with r = n − m − p.

Proof. As each ϕk,s satisfies Eq. (6.2), ϕ satisfies it too. Thus, we have that ϕ will be a cocycle of C iff ϕ satisfies the
equations

[X0, ϕ(Yi , Ym)] − ϕ(Yi+1, Ym) = 0, with 1 ≤ i ≤ m

which proves the result. �

The above proposition gives us a method for constructing all the cocycles with weight p, max
{

n−2m−1
2 , n − 2m

}
≤

p ≤ n − m − 2, and combining with Proposition 6.1 the complete description of C can be obtained. An explicit de-
scription of C with n ≥ 2m − 1 will be given in the following section.

7. Basis of C for n ≥ 2m − 1

In this section we are going to apply the method described in the above section in order to construct an explicit basis
of C . In particular, we shall give (Theorem 2) a basis of C in the case with more cocycles: m(m+1)

2 with n ≥ 2m − 1
(see Theorem 1).

Thanks to the condition n ≥ 2m − 1, the weight p can only be contained in the interval −1 ≤ p ≤ n − 2. As
Proposition 6.1 gives us the description of the cocycles with p ≥ n − m − 1, it remains to describe a basis of the
cocycles of C such that

n − 2m ≤ p ≤ n − m − 2.

If we fix p satisfying n − 2m ≤ p ≤ n − m − 2, then all the mappings ϕk,s with weight p will be

ϕ1,p+2, ϕ2,p+4, . . . , ϕl,p+2l

with l = b
n−p

2 c. In fact, as p ≥ n − 2m, then l = b
n−p

2 c ≤ m and min
(
b

n−p
2 c, m

)
= b

n−p
2 c. Let ϕ be

ϕ = a1ϕ1,p+2 + a2ϕ2,p+4 + · · · + alϕl,p+2l .

To simplify the expressions, we shall denote by C
k
j the expression Ck

j −
1
2 Ck

j−1.
Proposition 6.4 gives us r − 1 = n − m − p − 1 linear equations in a1, . . . , al :

(ad X0)
i (ϕ(Yr−i , Ym)) = ϕ(Yr , Ym), 1 ≤ i ≤ r − 1.
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That is, if p > n − 2m the resulting system is

1
2

a1 − a2C
1
m−2 + a3C

2
m−3 + · · · + al(−1)l−1C

l−1
m−l =

1
2

ar + · · · + al(−1)l−r C
l−r
m−l

1
2

a2 − a3C
1
m−3 + · · · + al(−1)l−2C

l−2
m−l =

1
2

ar + · · · + al(−1)l−r C
l−r
m−l

...
1
2

ar−1 + · · · + al(−1)l−r+1C
l−r+1
m−l =

1
2

ar + · · · + al(−1)l−r C
l−r
m−l ,

and if p = n − 2m, then r = m, and thus the coefficient of ar = am will be 1 instead of 1
2 . Then the system is

1
2

a1 − a2C
1
m−2 + a3C

2
m−3 + · · · + am−1(−1)m−2C

m−2
1 = 1

1
2

a2 − a3C
1
m−3 + · · · + am−1(−1)m−3C

m−3
1 = 1

...
1
2

am−1 = 1.

The basis of the set of solutions of this last system can be obtained by induction in the following way: am−1 =

2; am−2 = 2 + 2C
1
1(am−1); am−3 = 2 + 2C

1
2(am−2) − 2C

2
1(am−1) . . . , that is

ai = 2 + 2
m−i−1∑

j=1

(−1) j+1C
j
m−i− j (ai+ j ), i = m − 1, m − 2, . . . , 1.

The recursion formula is easy to apply for specific values of m and n. Developing the recursion formula we obtain an
explicit expression for ai :

ai = 2 +

m−i∑
q=2

2q


q−1∏
k=1

m−i−1−

k−1∑
t=1

jt∑
jk=1

(−1) jk+1C
jk

m−i−
k∑

t=1
jt

 , 1 ≤ i ≤ m − 1.

For these values of ai we obtain the following cocycle that corresponds to the value 1 of the coefficient of ϕm,n .
Thus, we shall call it ϕm,n :

ϕm,n = a1ϕ1,n−2m+2 + a2ϕ2,n−2m+4 + · · · + am−1ϕm−1,n−2 + ϕm,n .

In the case p > n − 2m the system admits l − r + 1 = b
n−p

2 c − n + m + p + 1 linearly independent solutions that
correspond to the following possibilities for the vector (ar , ar+1, . . . , al):

(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1).

• If (ar , ar+1, . . . , al) = (1, 0, . . . , 0), the resulting system is given by

1
2

a1 − a2C
1
m−2 + a3C

2
m−3 + · · · + ar−1(−1)r−2C

r−2
m−r+1 =

1
2

+ (−1)r C
r−1
m−r

1
2

a2 − a3C
1
m−3 + · · · + ar−1(−1)r−3C

r−3
m−r+1 =

1
2

+ (−1)r−1C
r−2
m−r

...
1
2

ar−1 =
1
2

+ C
1
m−r

whose solution basis can be obtained by induction in the following way:
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ar−1 = 1 + 2C
1
m−r ; ar−2 = 1 − 2C

2
m−r + 2C

1
m−r+1(ar−1) . . . , that is

ai = 1 + 2(−1)r−i+1C
r−i
m−r + 2

r−i−1∑
j=1

(−1) j+1C
j
m−i− j (ai+ j ), i = r − 1, r − 2, . . . , 1.

Developing the recursion formula we obtain an explicit expression for ai :

ai = 1 + 2(−1)r−i+1C
r−i
m−r +

r−i∑
q=2

2q−1


q−1∏
k=1

r−i−1−

k−1∑
t=1

jt∑
jk=1

(−1) jk+1C
jk

m−i−
k∑

t=1
jt



+

r−i∑
q=2

2q(−1)r−i+q


q−1∏
k=1

r−i−1−

k−1∑
t=1

jt∑
jk=1

C
jk

m−i−
k∑

t=1
jt


C

r−i−
q−1∑
t=1

jt

m−r


with 1 ≤ i ≤ r − 1. Hence for these values of ai (1 ≤ i ≤ r − 1) and ar = 1, ar+1 = · · · = al = 0, we obtain the
cocycle ϕr,p+2r given by

ϕr,p+2r = a1ϕ1,p+2 + a2ϕ2,p+4 + · · · + ar−1ϕr−1,p+2(r−1) + ϕr,p+2r .

• In the remaining cases, it can be seen that for each h, r + 1 ≤ h ≤ l, such that ah = 1 and ak = 0 with r ≤ k ≤ l
and k 6= h, we obtain the cocycle ϕh,p+2h ,

ϕh,p+2h = ah
1 ϕ1,p+2 + ah

2 ϕ2,p+4 + · · · + ah
r−1ϕr−1,p+2(r−1) + ϕh,p+2h

with

ah
i = 2(−1)h−r C

h−r
m−h + (−1)h−r C

h−r
m−h

r−i∑
q=2

2q


q−1∏
k=1

r−i−1−

k−1∑
t=1

jt∑
jk=1

(−1) jk+1C
jk

m−i−
k∑

t=1
jt



+ 2(−1)h−i+1C
h−i
m−h +

r−i∑
q=2

2q(−1)h−i+q


q−1∏
k=1

r−i−1−

k−1∑
t=1

jt∑
jk=1

C
jk

m−i−
k∑

t=1
jt


C

h−i−
q−1∑
t=1

jt

m−h


for 1 ≤ i ≤ r − 1.

Thus, we have the following

Theorem 2. A basis of the space of cocycles Z2(Ln,m, Ln,m) ∩ Hom(S2g1, g0), with n ≥ 2m − 1, will be given by
the following cocycles.

• For each p such that n − m − 1 ≤ p ≤ n − 2, there are b
n−p

2 c cocycles of weight p in the basis, that is

ϕ1,p+2, ϕ2,p+4, . . . , ϕb
n−p

2 c,p+2b
n−p

2 c
.

• For p = n − 2m, there is only one cocycle of weight p in the basis, that is

ϕm,n = a1ϕ1,n−2m+2 + a2ϕ2,n−2m+4 + · · · + am−1ϕm−1,n−2 + ϕm,n

with

ai = 2 +

m−i∑
q=2

2q


q−1∏
k=1

m−i−1−

k−1∑
t=1

jt∑
jk=1

(−1) jk+1C
jk

m−i−
k∑

t=1
jt

 , 1 ≤ i ≤ m − 1.
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• For each p such that n − 2m < p ≤ n − m − 2, there are l − r + 1 = b
n−p

2 c− (n − m − p)+ 1 cocycles of weight
p in the basis, that is

ϕr,p+2r = a1ϕ1,p+2 + a2ϕ2,p+4 + · · · + ar−1ϕr−1,p+2(r−1) + ϕr,p+2r

with

ai = 1 + 2(−1)r−i+1C
r−i
m−r +

r−i∑
q=2

2q−1 Pq +

r−i∑
q=2

2q(−1)r−i+q Rq

C
r−i−

q−1∑
t=1

jt

m−r

 ,

and

ϕh,p+2h = ah
1 ϕ1,p+2 + ah

2 ϕ2,p+4 + · · · + ah
r−1ϕr−1,p+2(r−1) + ϕh,p+2h

with

ah
i = 2(−1)h−r C

h−r
m−h + (−1)h−r C

h−r
m−h

r−i∑
q=2

2q Pq + 2(−1)h−i+1C
h−i
m−h

+

r−i∑
q=2

2q(−1)h−i+q Rq

C
h−i−

q−1∑
t=1

jt

m−h


for r < h ≤ l, 1 ≤ i ≤ r − 1. Here we have denoted by Pq and Rq the following sequences of nested products:

Pq =

q−1∏
k=1

r−i−1−

k−1∑
t=1

jt∑
jk=1

(−1) jk+1C
jk

m−i−
k∑

t=1
jt

Rq =

q−1∏
k=1

r−i−1−

k−1∑
t=1

jt∑
jk=1

C
jk

m−i−
k∑

t=1
jt
.

Proof. For each p all the cocycles described in the theorem are linearly independent, so all the cocycles of the theorem
are linearly independent. It remains to count them.

In the case n −m −1 ≤ p ≤ n −2 the cocycles obtained are all of the form ϕk,s (see Proposition 6.1). In particular
there are b

n−p
2 c cocycles for each p; thus in total for this case we have

n−2∑
p=n−m−1

⌊
n − p

2

⌋
=


m2

+ 2m

4
if m is even

m2
+ 2m + 1

4
if m is odd.

In the case n − 2m ≤ p ≤ n − m − 2, we have

n−m−2∑
p=n−2m

⌊
n − p

2

⌋
− n + m + p + 1 =


m2

4
if m is even

m2
− 1
4

if m is odd.

If we sum, we obtain in total m(m+1)
2 cocycles of Z2(Ln,m, Ln,m) ∩ Hom(S2g1, g0) that are linearly independent. As

the dimension of the space is m(m+1)
2 (see Theorem 1) the proof is finished. �
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[2] N. Bourbaki, Groupes et algèbres de Lie, Hermann, Paris, 1975 (Chapter 7–8).
[3] D.B. Fuks, Cohomology of Infinite-Dimensional Lie algebras, Plenum Publishing Corp., 1986.
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